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Abstract 

To improve the consistency of 3-dimensional data describing the geometry of 
pressure-measuring piston-cylinder assemblies, a new approach, based on the least-
squares method, is proposed. It allows the results of diameter-, straightness- and 
roundness measurements to be linked with each other, with only minimum 
discrepancies between them. When processing the dimensional data, it is possible 
thanks to this new approach to weight them differently - according to their 
measurement uncertainties. The new approach was applied to three gas-operated 
piston-cylinder assemblies with nominal effective areas of 10 cm2 and 5 cm2 which are 
used at PTB as primary gas pressure standards for the range up to 2 MPa. The 
dimensional measurements were carried out by means of different instruments and the 
results were analysed. The discrepancies in the dimensional data sets obtained within 
the scope of the new approach are typically smaller than 16 nm, which agrees with the 
uncertainties claimed for each kind of dimensional measurement. The effective areas 
of the three piston-cylinder assemblies were calculated using the Dadson theory and 
then adjusted taking into account the results of both cross-float measurements carried 
out between them and pressure measurements carried out against a primary mercury 
manometer. Finally, relative standard uncertainties smaller than 2·10-6 could be 
obtained. 
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1. Introduction 

The effective area of piston-cylinder assemblies which are used as primary 
pressure standards in pressure balances is usually determined from the 
dimensional properties of the pistons and cylinders by means of Dadson's 
theory [1]. At PTB, the lowest uncertainty of the dimensional data is achieved 
when the straightness of the pistons and cylinders (S), the roundness (R) and 



the diameters (D) are measured separately (sometimes using different 
measurement instruments) and when S and R are then linked to D in order to 
generate a 3-dimensional (3D) data set which describes the generatrix surfaces 
of the cylinder bore and the piston. One of the contributions to the uncertainty of 
the 3D data produced in this way originates from the contradictions between S, 
R and D measurements.  

So far [2], only two pairs of diameters, measured in two reference levels 
and in two orthogonal directions, have been used for a 3D data generation 
which was performed successively: First, two circle traces, measured in the 
reference levels, were linked to the two diameters pairs; then the generatrix 
traces were positioned in the space to meet the defined two circle traces; finally, 
the remaining circle traces were adjusted to the generatrix traces. Additional 
diameters, measured in other than the reference levels, were used to check the 
results of the 3D generation. The main disadvantage of this method is, in the 
first place, that not all measurement data being available are included in the 
analysis and, in the second place, that a potential anomaly of S, R or D data at 
the reference levels and azimuths has a strong effect on the output data. 

An improvement can be achieved using the least-squares (LS) method 
because an arbitrary choice of the reference heights and directions is no longer 
necessary and, due to a link of all data at all cross points, the effect of an 
anomaly is reduced. In addition, when processing the S, R and D data, the LS 
method allows them to be weighted according to their measurement 
uncertainties.  

2. Least-squares methods 

Normally, results of dimensional measurements are present in the form of  
straightness deviations  Sj(z), j = 1, 2,…,m, 

roundness deviations Ri(ϕ), i = 1,2,…,l, 
and diameters  Dij, 

where z and ϕ mean the axial and angular coordinates, j enumerates the 
angle directions of the straightness measurements, i counts levels of roundness 
measurements, m and l are total numbers of generatrix and circle traces, 
respectively, characterised by the dimensional measurements. (For Dij, i and j 
have the same meaning as given above, however it is not necessary that 
diameter values are available for all cross points of the generatrix and circle 

traces). The radii of the generatrix and circle traces, rS,j(z) and rR,i(ϕ), can be 
obtained from the shape deviations using the following relations: 

( ) ( ) zbazSzr jjjjS ++=, ,      (1) 

( ) ( ) ( ) ( )ϕϕϕϕ sincos, ⋅+⋅++= iiiiiR vwPRr ,   (2) 

where aj, bj, Pi, wi and vi are unknown parameters. They are found, by 
means of the LS method, from the condition of minimum discrepancies between 

rS,j(z), rR,i(ϕ) and diameters at the cross points of the generatrix and circle 
traces. Two cases will be considered in the following: (i) when the uncertainties 
of S, R and D measurements are equal, and (ii) a more general case, when 
they are different. 
 
  
  
  



Equal uncertainties of dimensional measurements 
The cross points of generatrix and circle traces are given by the coordinates 

(zi, ϕj), the radii of the generatrix and circle traces are defined as rS,ij = rS,j(zi), 
rR,ij = rR,i(ϕj). As diameters are not necessarily measured for all (zi, ϕj) points, it is 
useful to introduce the parameter dij, which is 1 if a diameter is available and 0, 
if it is not. 

Four diameters, lying in two different levels and in two different angle 
directions, should be chosen to identify an initial coordinate system for the 3D 
data to be created. The choice of these diameters is unimportant because in the 
end, the z axis of the coordinate system will be redefined by the axis of the LS 
cylinder, as described in section 3. The chosen reference diameters are 
indicated by parameter cij equal 1 for reference diameters and equal 0 for non-
reference diameters. 

With these definitions, the differences between the diameters and radii of 
the generatrix and circle traces are given by the following equations:  

S and R:   ijRijSij rr ,, −=∆ ,     (5) 

S and non-ref. D:  ( ) ( ) ijijijSijSijij dcrrD ⋅−⋅−−⋅= 15.0 *,,µ ,  (6) 

R and non-ref. D:  ( ) ( ) ijijijRijRijij dcrrD ⋅−⋅−−⋅= 15.0 *,,ν ,  (7) 

S and ref. D:   ( ) ijijSijij crD ⋅−⋅= ,5.0σ ,    (8) 

R and ref. D:   ( ) ijijRijij crD ⋅−⋅= ,5.0τ ,    (9) 

where   
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The coefficient of 0.5 in (6, 7) takes into account the fact that these relations 
contain two differences between the shape and the diameter data. The 
coefficient of 0.5 in (8, 9) means that half reference diameters are taken as 
reference radii.  

A minimum of the sum of the squared differences χ2, 
( ) min

,

222222 →++++∆= ∑
ji

ijijijijij τσνµχ ,    (11) 

is obtained by differentiating it by each of the 2×m + 3×l unknown parameters aj, 
bj, Pi, wi and vi and by equating each result to zero. This leads to a system of 

2×m + 3×l linear equations which can easily be solved. 
 
  

  

  

  



Different uncertainties of dimensional measurements 

In the case of different uncertainties of the S, R and D measurements, uS, 
uR, and uD, respectively, differences between rS,ij, rR,ij and Dij on the one hand 
and unknown "true" radii rij on the other hand can be considered:  

rij and S :   ijSijij rr ,−=α ,     (12) 

rij and R :   ijRijij rr ,−=β ,     (13) 

rij and non-ref. D:  ( ) ( ) ijijijijijij dcDrr ⋅−⋅−+⋅= 15.0 *γ ,  (14) 

rij and ref. D:   ( ) ijijij cDr ⋅⋅−= 5.0δ .   (15) 

In addition to the unknown parameters aj, bj, Pi, wi and vi, these relations 

contain l×m unknown variables rij. As in the previous subsection, all unknown 
parameters are found by minimising the sum of the squared differences, which 
are now weighted by the inversely proportional squares of the uncertainties: 
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Factor 0.5 in (16) takes into account that γij and δij depend only on half 
diameters. Differentiating (16) by each of the unknown parameters leads to a 

system of l×m + 2×m + 3×l linear equations with the same amount of variables.  

3. Data processing and effective area calculation 

Since 1989, different measurement techniques and instruments, including a 
one-dimensional Abbe-comparator, a universal measurement machine Moore 
No. 3, an RTH Talyrond 73, a state-of-the-art comparator for diametric 
measurements (KOMF) and an MFU-8 instrument have been applied for the 
dimensional characterisation of piston-cylinder assemblies [2-5]. With these 
instruments, the shape deviations are measured dynamically so that the results 
contain noise and surface roughness components. To remove them, the 
Gaussian filters with the cut-off wavelength of 0.8 mm for S data and with the 
cut-off wave number of 150 upr for R data, 50 % transmission [6], are applied 
prior to linking the S, R and D data. After the 3D data sets have been 
generated, they are transformed to a new coordinate system whose z-axis 
coincides with the axis of the LS cylinder of the 3D data found by the method 
described in [7]. This step is important to achieve a coaxial positioning of the 3D 
data sets for the piston and the cylinder bore. The effective area of the piston-
cylinder assemblies is calculated by the Dadson theory [1], taking into account 
all possible combinations of the piston's and cylinder bore's dimensions along a 
section containing the assembly axis.  

4. Results and discussion 

The new approach was applied to three gas-operated piston-cylinder 
assemblies, two with a nominal effective area of 10 cm2, identified by the Nos. 
288 and 290, and one of 5 cm2, identified by the No. 6222, which are used at 
PTB as primary gas pressure standards for the range up to 2 MPa. The 3D data 
of assembly 6222, generated by the new approach from the dimensional 
measurement results obtained in 2006, are shown in Figure 1. This figure 



demonstrates an agreement within a few nanometres between the S, R and D 
data linked by the new approach. It is interesting to note that the anomaly of 
one of the generatrices, which might have been produced by an impurity on the 
cylinder surface or by another disturbance and is evidently not a real property of 
the cylinder, would lead to wrong data for this generatrix and other traces if the 
anomaly lied in the level of the reference diameters and the data were 
evaluated by the old successive procedure.  
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Figure 1 Dimensional properties of the piston and the cylinder bore of piston-
cylinder assembly 6222, characterised by roundness-, straightness- and diameter 
measurements 

 

 

 

 

 

 



 

Details of the dimensional measurements and the evaluation of the 
dimensional data for the three piston-cylinder assemblies are given in Table 1.  

 
Table 1 Summary of the dimensional measurements and evaluation for the 3 piston-
cylinder units Nos. 288, 290 and 6222: artefact measured – cylinder (c) and piston (p); 
property (X) – diameter (D), roundness (R) and straightness (S); instrument applied for 
dimensional measurement; standard measurement uncertainty of property X (uX); differences 

between half diameters, R and S radii (Y); standard deviations of these differences [δ(rY)]; 
standard uncertainties calculated for R and S radii [u(rX)]; their contributions to the effective 
area uncertainties [ur,R(A0)/A0] and [ur,S(A0)/A0]; and combined standard uncertainties of the 
effective areas, determined from the dimensional data [u(A0)/A0]. 

 

The residual differences between the half diameters and the radii [δ(rY)] 
determined by the new linking approach are always smaller than 16 nm and 
support the uncertainties of the dimensional measurements (uX) claimed for 
each of the measuring instruments. The uncertainties of the radial values [u(rX)] 
were calculated for R and S traces using the following relationships: 

( ) ( )[ ] ( ) ( ){ } 5.0
222

2 SRRDR rrDuru −− ++= δδ ,    (17) 

( ) ( )[ ] ( ) ( ){ } 5.0
222

2 SRSDS rrDuru −− ++= δδ .    (18) 

The uncertainties ur,R(A0)/A0 and ur,S(A0)/A0 in Table 1 present contributions 
of u(rR) and u(rS) to A0 when the latter is calculated either from rR or rS data. The 

Unit Arte-
fact 

X Instrument uX 
in 
nm 

Y δ(rY) 
in 
nm 

u(rX) 
in 
nm 

ur,R(A0)/A0, 
ur,S(A0)/A0, 
in 10-6 

u(A0)/A0 
in 10-6 

288 c D KOMF 10 D-R 16    

  R MFU-8 30 D-S 10 19 2.0  

  S MFU-8 40 R-S 9 14  2.4 

 p D KOMF 5 D-R 14    

  R MFU-8 30 D-S 11 16 1.6  

  S MFU-8 40 R-S 8 14   

290 c D MFU-8 20 D-R 10    

  R MFU-8 30 D-S 15 16 1.6  

  S MFU-8 40 R-S 8 20  2.3 

 p D MFU-8 20 D-R 4    

  R MFU-8 30 D-S 6 11 1.8  

  S MFU-8 40 R-S 4 12   

6222 c D MFU-8 20 D-R 4    

  R Talyrond 
73 

20 D-S 4 12 1.9  

  S MFU-8 40 R-S 5 12  2.2 

 p D MFU-8 20 D-R 5    

  R Talyrond 
73 

20 D-S 3 12 1.9  

  S MFU-8 40 R-S 5 11   



uncertainty in the last column, u(A0)/A0, is a combined uncertainty which takes 
into account the difference between A0 obtained from R and S radii as well as 
variations of A0 with a change in the angular coordinate, angular position of the 
piston in the cylinder and pressure.  
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Figure 2  Relative deviations of the experimental effective areas or their ratios from the 
dimensional values (Original A0) and of the dimensional and experimental effective 
areas or their ratios from the synchronised ones (Synchronised A0). 

 
The results for the dimensional and experimental effective areas are 

presented in Figure 2. The experimental data include effective areas obtained 
using a mercury manometer (AHg) as a reference [8] and ratios of the effective 
areas observed in cross-float experiments. The left part of the figure shows 
these results in reference to the dimensional values. From the dimensional and 
the experimental results, adjusted effective areas (AAdj) have been derived 
which present the best compromise for all data. The points in the right part of 
the figure show differences between the original and the adjusted effective 
areas. The adjusted effective areas demonstrate good agreement with the 
cross-float A0 ratios and, due to the independence of Adim and AHg, have 
combined standard uncertainties (shown by the dashed lines) smaller than 
u(Adim) and u(AHg). 

 

 



Conclusions 

The new approach allows diameter, straightness and roundness 
measurement data to be optimally linked and their uncertainties to be 
estimated. Discrepancies in the dimensional data sets produced by the new 
approach are typically smaller than 16 nm, which agrees with the uncertainties 
claimed for each kind of the dimensional measurements. Using the new 
approach, the effective areas of three primary gas-operated piston-cylinder 
assemblies could be determined with relative standard uncertainties smaller 
than 2.5·10-6. They agree well with the experimental results obtained using a 
primary mercury manometer and from cross-float experiments, and allow 
combined relative standard uncertainties of smaller than 2·10-6 to be obtained. 
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